🤖 AI Features Documentation

Advanced AI-powered cryptographic intelligence and automation

📚 Overview 🤖 AI Features 🧠 Machine Learning ⚛️ Quantum ML

🤖 AI-Powered Cryptographic Intelligence

PQ Crypta integrates cutting-edge artificial intelligence to enhance cryptographic operations, threat detection, and system optimization. Our AI features provide intelligent automation, predictive analytics, and adaptive security measures.

99.5%
Threat Detection
15x
Processing Speed
94%
Prediction Accuracy
24/7
Monitoring

🗣️ Natural Language Processing (NLP)

Advanced NLP capabilities for policy generation, documentation analysis, and intelligent text processing.

Sentiment Analysis

  • Security policy tone analysis
  • Threat intelligence sentiment scoring
  • User feedback classification
  • Risk communication assessment

Named Entity Recognition

  • Cryptographic algorithm identification
  • Security parameter extraction
  • Vulnerability name recognition
  • Protocol version detection

Document Intelligence

  • Security requirement analysis
  • Compliance document parsing
  • Policy generation automation
  • Technical specification review
// NLP Processing Example const nlpProcessor = new NLPProcessor({ models: ['sentiment-analysis', 'named-entity-recognition'], capabilities: ['policy-generation', 'requirement-analysis'] }); await nlpProcessor.analyzeSecurity({ document: securityPolicy, extractEntities: true, generateRecommendations: true });

🛡️ AI Threat Assessment

Intelligent threat detection and risk assessment using advanced machine learning models.

1

Data Collection

Real-time monitoring

2

Pattern Analysis

Anomaly detection

3

Risk Scoring

Threat classification

4

Response

Automated mitigation

Anomaly Detection

  • Network traffic analysis
  • Behavioral pattern recognition
  • Statistical outlier detection
  • Temporal anomaly identification

Attack Classification

  • SQL injection detection
  • XSS attack identification
  • Command injection analysis
  • Cryptographic weakness scanning

Predictive Analysis

  • Threat trend prediction
  • Attack vector forecasting
  • Security incident prediction
  • Risk escalation modeling

🔍 AI Vulnerability Detection

Automated vulnerability scanning and code analysis using AI-powered detection engines.

Static Code Analysis

  • Cryptographic implementation review
  • Hardcoded secret detection
  • Insecure algorithm identification
  • Code quality assessment

Dynamic Analysis

  • Runtime vulnerability detection
  • Memory safety analysis
  • Protocol implementation testing
  • Side-channel attack detection

Configuration Review

  • Security configuration analysis
  • Best practice compliance
  • Parameter validation
  • Automated remediation suggestions
// Vulnerability Detection Example const threatPatterns = { 'sql-injection': { severity: 'high', pattern: /(\bUNION\b|\bSELECT\b|\bDROP\b)/i }, 'crypto-weakness': { severity: 'high', pattern: /\b(MD5|SHA1|DES|RC4|ECB)\b/i }, 'hardcoded-secret': { severity: 'critical', pattern: /(password|secret|key)\s*[:=]\s*['"][^'"]{8,}/i } };

📈 Intelligent Performance Optimization

AI-driven performance analysis and optimization recommendations for cryptographic operations.

Performance Prediction

  • Algorithm performance forecasting
  • Resource usage prediction
  • Scalability analysis
  • Bottleneck identification

Optimization Recommendations

  • Algorithm selection guidance
  • Parameter tuning suggestions
  • Hardware utilization optimization
  • Caching strategy recommendations

Adaptive Intelligence

  • Real-time performance monitoring
  • Automatic parameter adjustment
  • Load balancing optimization
  • Self-healing system capabilities

🏗️ AI Model Architectures

Overview of the neural network architectures powering our AI features.

// AI Model Configuration const aiModels = { 'crypto-performance-predictor': { architecture: 'transformer', layers: 16, hiddenSize: 1024, attentionHeads: 16, accuracy: '99.5%' }, 'threat-detector': { architecture: 'graph-neural-network', layers: 12, graphLayers: 6, hiddenSize: 768, accuracy: '99.8%' }, 'vulnerability-scanner': { architecture: 'convolutional-neural-network', layers: 24, filterSizes: [3, 5, 7], pooling: 'attention', accuracy: '97.3%' } };

🌐 AI/ML API Endpoints

RESTful API endpoints for integrating AI and ML capabilities into external applications.

POST /api/ai/analyze-threat

Analyze potential security threats using AI models.

{ "data": "suspicious network activity log", "context": { "source": "external", "authenticated": false, "timeOfDay": 23 } } // Response { "threatLevel": "high", "confidence": 0.85, "anomalies": [...], "attackPatterns": [...], "riskScore": 0.76 }

POST /api/ml/predict-performance

Predict cryptographic algorithm performance using ML models.

{ "algorithm": "ML-KEM-1024", "dataSize": 1048576, "systemSpecs": { "cpu": "x64", "memory": 8192, "cores": 4 } } // Response { "prediction": { "throughput": 1250, "latency": 0.8, "confidence": 0.94 } }

POST /api/ai/detect-vulnerabilities

Scan code or configuration for security vulnerabilities.

{ "code": "password = 'hardcoded123'", "type": "javascript" } // Response { "vulnerabilities": [ { "id": "hardcoded-secret", "severity": "critical", "description": "Hardcoded secret detected", "location": 0, "evidence": "password = 'hardcoded123'" } ], "riskScore": 0.9 }

POST /api/ml/recommend-algorithm

Get intelligent algorithm recommendations based on requirements.

{ "requirements": { "securityLevel": "high", "performanceRequired": true, "dataType": "large-files", "quantumThreat": true } } // Response { "recommendation": { "algorithm": "ML-KEM-1024", "confidence": 0.96, "reasoning": "High security with quantum resistance", "alternatives": ["hybrid", "multi-pq"] } }

Authentication

All AI/ML API endpoints require authentication using API keys.

// Headers required for all requests { "Authorization": "Bearer your-api-key-here", "Content-Type": "application/json" }

Rate Limits

API rate limits ensure fair usage and system stability.

  • AI Analysis: 100 requests/hour
  • ML Predictions: 200 requests/hour
  • Vulnerability Scans: 50 requests/hour
  • Algorithm Recommendations: 100 requests/hour
← Back to Documentation