🤖 AI Features Documentation

Advanced AI-powered cryptographic intelligence and automation

📚 Overview 🤖 AI Features 🧠 Machine Learning

🤖 AI-Powered Cryptographic Intelligence

PQ Crypta integrates artificial intelligence to enhance cryptographic operations, threat detection, and system optimization through Groq API, advanced RAG chatbot, and ML-powered analysis.

🚀 Groq API - High-Speed LLM Inference

PQ Crypta integrates Groq's ultra-fast inference API for real-time natural language processing with exceptional performance and low latency.

Llama 3.3 70B Versatile

  • Ultra-fast inference (750+ tokens/second)
  • Context window: 128K tokens
  • Advanced reasoning capabilities
  • Real-time response generation

Integration Features

  • Streaming responses with SSE
  • Conversation history management
  • Temperature and parameter control
  • Automatic fallback mechanisms

Use Cases

  • Interactive chatbot conversations
  • Cryptographic documentation queries
  • Real-time code analysis
  • Security policy generation
// Groq API Configuration const groqConfig = { model: 'llama-3.3-70b-versatile', apiKey: process.env.GROQ_API_KEY, maxTokens: 2000, temperature: 0.7, streamingEnabled: true }; // Example usage const response = await groqClient.chat.completions.create({ model: 'llama-3.3-70b-versatile', messages: conversationHistory, stream: true });

🧙 The Wizard - Advanced RAG Chatbot

An advanced Retrieval-Augmented Generation (RAG) chatbot with comprehensive codebase knowledge and intelligent query processing.

37,760
Indexed Chunks
FAISS
Vector Store
Hybrid
Search Strategy
Cross-Enc
Re-ranking

Vector Search (FAISS)

  • 37,760 code chunks indexed
  • 384-dimensional embeddings
  • all-MiniLM-L6-v2 model
  • Semantic similarity search

Hybrid Search Pipeline

  • Dense retrieval (FAISS)
  • Sparse retrieval (BM25)
  • Cross-encoder re-ranking
  • Context-aware filtering

Advanced Features

  • Query decomposition
  • Multi-hop reasoning
  • Conversation memory (15 messages)
  • Source citation and verification
// RAG Pipeline Configuration const ragConfig = { // Vector store vectorStore: 'faiss', indexedChunks: 37760, embeddingModel: 'all-MiniLM-L6-v2', embeddingDimension: 384, // Hybrid search hybridSearch: { denseWeight: 0.7, sparseWeight: 0.3, reranker: 'cross-encoder', topK: 5 }, // LLM integration llmBackend: 'groq', model: 'llama-3.3-70b-versatile', contextWindow: 8000, // Advanced features queryDecomposition: true, multiHopReasoning: true, conversationMemory: 15 };
1

Query Processing

Decomposition & expansion

2

Hybrid Retrieval

Dense + Sparse search

3

Re-ranking

Cross-encoder scoring

4

Generation

Context-aware response

🔐 Zero-Knowledge Proof Systems

Production-grade zero-knowledge proof implementation using arkworks cryptographic libraries for privacy-preserving verification.

6
ZK Systems
arkworks
Library
Groth16
Primary
BN254
Curve

Proof Systems

  • Groth16 - smallest proofs, fast verification
  • PLONK - universal SNARKs, no trusted setup per-circuit
  • Bulletproofs - constant-time friendly, no trusted setup
  • STARK - quantum-resistant, transparent
  • Nova - recursive proofs, IVC
  • Halo2 - no trusted setup, efficient

Verification Modes

  • Fast - development/testing (skip verification)
  • Secure - production (full verification)
  • Audit - compliance (verification + detailed logging)
  • Custom - user-defined behavior

Blockchain Integration

  • Smart contract deployment for on-chain verification
  • Gas optimization with batch verification
  • Multi-blockchain support (Ethereum, Polygon, etc.)
  • Proof aggregation for efficiency
// Zero-Knowledge Proof Implementation (Rust + arkworks) // Located in: /var/www/html/public/ent/core/src/zk_verification.rs use ark_bn254::{Bn254, Fr as Bn254Fr}; use ark_groth16::{Groth16, PreparedVerifyingKey, Proof, ProvingKey}; use ark_relations::r1cs::{ConstraintSynthesizer, ConstraintSystemRef}; pub trait ZkVerifiable { fn generate_zk_proof( &self, operation_data: &[u8], context: &HashMap<String, String>, ) -> Result<ZkProofContainer, ZkVerificationError>; fn verify_zk_proof( &self, proof: &ZkProofContainer, ) -> Result<bool, ZkVerificationError>; } // Blockchain integration with multi-network support pub struct ZKProofSystem { proof_systems: Vec<ZKProofSystemType>, // Groth16, PLONK, etc. blockchain_networks: Vec<BlockchainNetwork>, gas_optimization: GasOptimizationConfig, }

🛡️ AI Threat Assessment

Intelligent threat detection and risk assessment using advanced machine learning models.

1

Data Collection

Real-time monitoring

2

Pattern Analysis

Anomaly detection

3

Risk Scoring

Threat classification

4

Response

Automated mitigation

Anomaly Detection

  • Network traffic analysis
  • Behavioral pattern recognition
  • Statistical outlier detection
  • Temporal anomaly identification

Attack Classification

  • SQL injection detection
  • XSS attack identification
  • Command injection analysis
  • Cryptographic weakness scanning

Predictive Analysis

  • Threat trend prediction
  • Attack vector forecasting
  • Security incident prediction
  • Risk escalation modeling

🔍 AI Vulnerability Detection

Automated vulnerability scanning and code analysis using AI-powered detection engines.

Static Code Analysis

  • Cryptographic implementation review
  • Hardcoded secret detection
  • Insecure algorithm identification
  • Code quality assessment

Dynamic Analysis

  • Runtime vulnerability detection
  • Memory safety analysis
  • Protocol implementation testing
  • Side-channel attack detection

Configuration Review

  • Security configuration analysis
  • Best practice compliance
  • Parameter validation
  • Automated remediation suggestions
// Vulnerability Detection Example const threatPatterns = { 'sql-injection': { severity: 'high', pattern: /(\bUNION\b|\bSELECT\b|\bDROP\b)/i }, 'crypto-weakness': { severity: 'high', pattern: /\b(MD5|SHA1|DES|RC4|ECB)\b/i }, 'hardcoded-secret': { severity: 'critical', pattern: /(password|secret|key)\s*[:=]\s*['"][^'"]{8,}/i } };

📈 Intelligent Performance Optimization

AI-driven performance analysis and optimization recommendations for cryptographic operations.

Performance Prediction

  • Algorithm performance forecasting
  • Resource usage prediction
  • Scalability analysis
  • Bottleneck identification

Optimization Recommendations

  • Algorithm selection guidance
  • Parameter tuning suggestions
  • Hardware utilization optimization
  • Caching strategy recommendations

Adaptive Intelligence

  • Real-time performance monitoring
  • Automatic parameter adjustment
  • Load balancing optimization
  • Self-healing system capabilities

🌐 AI/ML API Endpoints

RESTful API endpoints for integrating AI and ML capabilities into external applications.

POST /api/ai/analyze-threat

Analyze potential security threats using AI models.

{ "data": "suspicious network activity log", "context": { "source": "external", "authenticated": false, "timeOfDay": 23 } } // Response { "threatLevel": "high", "confidence": 0.85, "anomalies": [...], "attackPatterns": [...], "riskScore": 0.76 }

POST /api/ml/predict-performance

Predict cryptographic algorithm performance using ML models.

{ "algorithm": "ML-KEM-1024", "dataSize": 1048576, "systemSpecs": { "cpu": "x64", "memory": 8192, "cores": 4 } } // Response { "prediction": { "throughput": 1250, "latency": 0.8, "confidence": 0.94 } }

POST /api/ai/detect-vulnerabilities

Scan code or configuration for security vulnerabilities.

{ "code": "password = 'hardcoded123'", "type": "javascript" } // Response { "vulnerabilities": [ { "id": "hardcoded-secret", "severity": "critical", "description": "Hardcoded secret detected", "location": 0, "evidence": "password = 'hardcoded123'" } ], "riskScore": 0.9 }

POST /api/ml/recommend-algorithm

Get intelligent algorithm recommendations based on requirements.

{ "requirements": { "securityLevel": "high", "performanceRequired": true, "dataType": "large-files", "quantumThreat": true } } // Response { "recommendation": { "algorithm": "ML-KEM-1024", "confidence": 0.96, "reasoning": "High security with quantum resistance", "alternatives": ["hybrid", "multi-pq"] } }

🌐 Federated Learning

Privacy-preserving distributed machine learning with secure multi-party computation.

7
Aggregation Strategies
DP
Differential Privacy
Byzantine
Robust

Aggregation Strategies

  • FedAvg - Federated Averaging
  • FedProx - Proximal Term Regularization
  • FedYogi - Adaptive Yogi Optimizer
  • FedAdam - Adaptive Momentum
  • Krum - Byzantine-Robust
  • Median - Coordinate-wise Median
  • Trimmed Mean - Outlier Removal

Privacy Mechanisms

  • Differential Privacy (Gaussian Mechanism)
  • Secure Multi-Party Computation
  • Gradient Clipping
  • Noise Addition
  • Secret Sharing

⚛️ Quantum Neural Networks

Hybrid quantum-classical neural networks using Qiskit 2.1.1 and PennyLane 0.42.2.

Qiskit 2.1.1
IBM Quantum
PennyLane 0.42.2
Lightning Backend

Quantum Architectures

  • Variational Quantum Circuits (VQC)
  • Quantum Convolutional Layers
  • Hybrid Quantum-Classical Networks
  • Quantum Kernel Methods
  • Quantum GANs

Quantum Features

  • Real Quantum Hardware Support
  • Circuit Transpilation
  • Error Mitigation
  • Quantum Transfer Learning
  • PyTorch Integration

🔬 Variational Quantum Eigensolver (VQE)

Quantum algorithm for ground state energy calculation and optimization problems.

VQE Capabilities

  • Molecular Hamiltonian (H2, etc.)
  • Max-Cut Problem Solving
  • TSP Optimization
  • Adaptive VQE
  • Quantum Natural Gradients

Optimizers

  • SPSA - Simultaneous Perturbation
  • COBYLA - Constrained Optimization
  • L-BFGS-B - Limited Memory BFGS
  • SLSQP - Sequential Least Squares

🔐 Fully Homomorphic Encryption (FHE)

RLWE-based homomorphic encryption for privacy-preserving computation on encrypted data.

RLWE + AES-256-GCM
Lattice-Based
Boolean + Integer
Operations

FHE Operations

  • Boolean Circuit Evaluation
  • 8/16/32/64-bit Integer Arithmetic
  • Homomorphic Addition
  • Homomorphic Multiplication
  • Privacy-Preserving Computation

Security Features

  • 128-bit Security Level
  • Key Serialization
  • Client-Server Architecture
  • No Data Decryption Required

Authentication

All AI/ML API endpoints require authentication using API keys.

// Headers required for all requests { "Authorization": "Bearer your-api-key-here", "Content-Type": "application/json" }

Rate Limits

API rate limits ensure fair usage and system stability.

  • AI Analysis: 100 requests/hour
  • ML Predictions: 200 requests/hour
  • Vulnerability Scans: 50 requests/hour
  • Algorithm Recommendations: 100 requests/hour
← Back to Documentation